概率统计随机过程之条件期望与重期望公式

概率统计随机过程之条件期望与重期望公式

概率统计随机过程之条件期望与重期望公式

Apr 18, 2022 · 概率统计随机过程

·

分享到:

概率统计随机过程之条件期望与重期望公式

之前对条件期望的理解有一些偏差,现在重新看了下条件期望的内容与重期望公式。注意(X|Y)的条件期望实际上是关于Y的函数,而重期望公式则与分区加权求和有着本质联系,提供了求X期望的另一种方式。

条件数学期望

重期望公式

随机个随机变量和的数学期望

条件期望的其他推论

条件数学期望

如果我们对条件分布求期望,则称为条件数学期望。在离散分布列和连续密度函数的定义方式如下,以二维举例:

\(X\)关于\(Y=y\)的条件期望: \[E(X|Y=y)=\begin{cases}\sum\limits_i x_iP(X=x_i|Y=y),\qquad(X,Y)为二维离散随机变量\\

\int_{-\infty}^{\infty}xp(x|y)\mathrm{d}x,\qquad(X,Y)为二维连续随机变量\end{cases}\tag{1}\]

\(Y\)关于\(X=x\)的条件期望: \[E(Y|X=x)=\begin{cases}\sum\limits_i y_iP(Y=y_i|X=x),\qquad(X,Y)为二维离散随机变量\\

\int_{-\infty}^{\infty}yp(y|x)\mathrm{d}y,\qquad(X,Y)为二维连续随机变量\end{cases}\tag{2}\]

注意,\(E(X|Y=y)\)是在\(y\)为特定值时,对\(x\)求和/积分,抹去了\(x\)的随机性,得到一个关于\(y\)的函数。同理,\(E(Y|X=x)\)抹去的是\(y\)的随机性,得到一个关于\(x\)的函数。

条件期望\(E(X|Y=y)\)和无条件期望\(E(X)\)的一大区别是,\(E(X)\)是一个数,而条件期望\(E(X|Y)\)是一个函数\(g(y)\)。

举个例子,如用\(X\)表示中国成年人的身高,则\(E(X)=170\)表示中国成年人的平均身高为170 cm,是一个具体的数字。若用\(Y\)表示中国成年人的足长,则\(E(X|Y=y)\)表示足长为\(y\)的中国成年人的平均身高,根据研究可知 \[

E(X|Y=y)=6.876y

\] 这显然是一个与\(y\)相关的函数,对\(y\)的不同取值,条件期望的取值也在变化。可以记: \[

g(y)=E(X|Y=y)

\] 进一步,还可以将条件期望看成是随机变量\(Y\)的函数,即\(E(X|Y)=g(Y)\),而将\(E(X|Y=y)\)看成是\(Y=y\)时\(E(X|Y)\)的一个取值。从这个角度来看,\(E(X|Y)\)也是一个随机变量。

如果条件期望也是一个随机数,那么条件期望的期望是什么呢?下面就用重期望公式做进一步说明。

重期望公式

前面提到,\(g(Y)=E(X|Y)\)也是一个随机变量,如果我们对其求期望,以连续函数为例,注意随机变量是\(Y\): \[

E[g(Y)]=\int_{-\infty}^\infty E(X|Y=y) p_Y(y)\mathrm{d}y

\] 我们将条件期望的定义(1)式代入可得: \[

\begin{aligned}

E[g(Y)]&=\int_{-\infty}^\infty[\int_{-\infty}^\infty xp(x|Y=y)\mathrm{d}x]\;p_{_Y}(y)\mathrm{d}y\\

(全概率公式)&=\int_{-\infty}^\infty\int_{-\infty}^\infty xp(x,y)\mathrm{d}x\mathrm{d}y\\

(提出x)&=\int_{-\infty}^\infty x\{\int_{-\infty}^\infty p(x,y)\mathrm{d}y\}\mathrm{d}x\\

(求x的边际pdf)&=\int_{-\infty}^\infty xp_{_X}(x)\mathrm{d}x\\

&=E(X)

\end{aligned}\tag{3}

\] 我们“惊讶”的发现,条件期望的期望竟然是\(X\)的无条件期望!由此,我们给出重期望公式:

定理:(重期望公式)设\((X,Y)\)是二维随机变量,且\(E(X)\)存在,则

\[E(X)=E[E(X|Y)]\]

重期望公式是概率论中比较深刻的一个结论。我们也可以换个角度理解:我们找到一个与\(X\)相关的量\(Y\),用\(Y\)的不同取值(要互斥)把\(X\)划分成若干小区域(场景),现在小区域上求\(X\)的期望或均值,然后再根据\(Y\)的出现概率对各个小区域的期望\(E(X_{y_i})\)求加权平均,即可求出整体\(X\)的期望。

具体一些,重期望公式也可以写成如下形式: \[

E(X)=\begin{cases}\sum\limits_i E(X|Y=y_i)P(Y=y_i),\qquad 离散场景\\

\int_{-\infty}^\infty E(X|Y=y)P_{_Y}(y)\mathrm{d}y,\qquad 连续场景\end{cases}

\]

随机个随机变量和的数学期望

设\(X_1,X_2,\dotsb\)为一系列独立同分布的随机变量,随机变量\(N\)只取正整数值,且\(N\)与\(\{X_n\}\)独立,证明: \[

E(\sum_{i=1}^N X_i)=E(X_1)E(N)

\]

证明:由重期望公式可知: \[

\begin{aligned}

E(\sum_{i=1}^N X_i)&=E[E(\sum_{i=1}^N X_i | N)]\\

&=\sum_{i=1}^\infty E(\sum_{i=1}^N X_i | N=n)P(N=n)\\

(\{X_n\}与N独立)&=\sum_{i=1}^\infty E(\sum_{i=1}^n X_i)P(N=n)\\

(\{X_n\}i.i.d)&=\sum_{i=1}^\infty nE(X_1)P(N=n)\\

&=E(X_1)\sum_{i=1}^\infty nP(N=n)\\

&=E(X_1)E(N)

\end{aligned}

\]

条件期望的其他推论

\(\mathrm{Var}(X)=E[\mathrm{Var}(X|Y)]+\mathrm{Var}[E(X|Y)]\)

证明: \[

\left .

\begin{aligned}

&E[\mathrm{Var}(X|Y)]=E\{E(X^2|Y)-[E(X|Y)]^2\}=E(X^2)-E[E^2(X|Y)]\\

\\

&\mathrm{Var}[E(X|Y)]=E[E^2(X|Y)]-[\underbrace{E\cdot E(X|Y)}_{E(X)}]^2=E[E^2(X|Y)]-[E(X)]^2

\end{aligned}

\right\}\Rightarrow\\

E[\mathrm{Var}(X|Y)]+\mathrm{Var}[E(X|Y)]=E(X^2)-E[E^2(X|Y)]+E[E^2(X|Y)]-[E(X)]^2\\

=E(X^2)-E^2(X)=\mathrm{Var}(X)

\]

\(E[f(Y)|Y]=f(Y)\)

证明: 当随机变量\(Y\)取到固定值\(y\)时(\(Y=y\)),就不存在随机性了。所以对于\(\forall Y=y\),有 \[

E[f(Y)|Y=y]=E[f(Y=y)|Y=y]=E[f(y)]=f(y)

\] 所以,有\(E[f(Y)|Y]=f(Y)\)。

\(E[g(X)\cdot Y|X]=g(X)E[Y|X]\)

\(E(XY)=E[X\cdot E(Y|X)]\)

\(\mathrm{Cov}[X,E(Y|X)]=\mathrm{Cov}(X,Y)\)

🎈 相关推荐

海信总部和各个分公司的电话地址?
beat365英国在线体育

海信总部和各个分公司的电话地址?

📅 07-01 👀 9341
it项目经理待遇怎么样
beat365英国在线体育

it项目经理待遇怎么样

📅 07-01 👀 5328
如何混合钹:完整指南
beat365英国在线体育

如何混合钹:完整指南

📅 06-27 👀 9839